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Introduction

Perspectives on model comparison (Bernardo & Smith, 2000)

M-closed view :

Corresponds to believing that one of the models {Mi , i ∈ I} is “true”.

M-completed view :

Corresponds to an individual acting as if {Mi , i ∈ I} simply constitute a range of specified models
currently available for comparison, to be evaluated in the light of the individual’s separate actual
belief model, Mt .

From this perspective, assigning probabilities {P(Mi ), i ∈ I} does not make sense.

M-open view :

Also acknowledges that {Mi , i ∈ I} are simply a range of specified models available for
comparison, so that assigning probabilities {P(Mi ), i ∈ I} does not make sense.

However, in this case, there is no separate overall actual belief specification Mt , perhaps because
we lack the time or competence to provide it.
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Introduction

Motivation

This talk presents a general reflection concerning the similarities between point estimation, model
selection and model averaging, and how such similarities could be useful to better understand
various procedures currently in use and perhaps to propose new ones.

Model selection and model averaging can both be regarded as point estimation problems over
suitably defined extended classes of models. We explore this idea in an objective Bayesian context.
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M-closed view

Parametric modelling

F = {f (x|θ) : θ ∈ Θ}

x = (x1, x2, . . . , xn); independent realizations of X ∼ f (x|θ0)

Aim: Estimate the true density f (x), which is assumed equal to f (x|θ0) for some θ0 ∈ Θ.

Frequentist approach

Maximum likelihood (ML)

θ̂ML = arg max
Θ

f (x|θ)

Predicting density

f̂ (x) = f (x|θ̂ML)
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M-closed view

Parametric modelling

Bayesian approach

Prior
P = {p(θ|φ) : φ ∈ Φ}

Posterior
p(θ|φ0

, x) ∝ f (x|θ) p(θ|φ0)

where φ0 specifies the elicited prior.

Maximum a posteriori (MAP)

θ̂MAP = arg max
Θ

p(θ|φ0
, x)

Posterior predictive density

f̂ (x) = f (x|φ0
, x)

=

∫
f (x|θ, x) p(θ|φ0

, x) dθ

=

∫
f (x|θ) p(θ|φ0

, x) dθ
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M-closed view

Parametric modelling

If f (x|φ0, x) is difficult to compute, we can approximate it by the ’Bayesian predicting density’

f̂ (x) ≈ f (x|θ̂MAP )

or using standard (MC)MC methods.

Another possibility (with a nonparametric, objective Bayes flavour) is the following.

Weighted likelihood bootstrap (WLB); Newton & Raftery (1994)

For b = 1, 2, . . . ,B

1. Generate w (b) = (w (b)
1 ,w (b)

2 , . . . ,w (b)
n ) ∼ Dirn(1, 1, . . . , 1)

2. Find θ̃(b) = arg max
Θ

∏n
i=1 f (xi |θ)

w(b)
i

We can use θ̃(1), θ̃(2), . . . , θ̃(B) to make inferences about θ (‘estimate’ the distribution of θ) or make
predictive inferences, e.g.

f̂ (x) ≈
1
B

B∑
b=1

f (x|θ̃(b))

Just as with ML, and unlike MAP, we do not need to specify φ0.
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M-closed view

Hierarchical modelling

F∗ = {f∗(x|φ) : φ ∈ Φ}
with

f∗(x|φ) =

∫
f (x|θ) p(θ|φ) dθ

This is the prior predictive density from the previous case. For f∗(x|φ) to be well defined, we need a proper prior on θ.

‘Frequentist’ approach

Empirical Bayes (EB)

φ̂EB = arg max
Φ

f∗(x|φ)

Note: EB is akin to ML; i.e., we are estimating φ by maximizing its ‘likelihood function’ f∗(x|φ).

Predicting density

f̂ (x) = f∗(x|φ̂EB , x)
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M-closed view

Hierarchical modelling

Bayesian approach

(Hyper)prior
P∗ = {p∗(φ|λ) : λ ∈ Λ}

Posterior
p∗(φ|λ0

, x) ∝ f∗(x|φ) p∗(φ|λ0)

where λ0 specifies the elicited hyperprior.

Maximum a posteriori empirical Bayes (MAP-EB)

φ̂MAP = arg max
Φ

p∗(φ|λ0
, x)

Posterior predictive density

f̂ (x) = f∗(x|λ0
, x)

=

∫
f∗(x|φ, x) p∗(φ|λ0

, x) dφ
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M-closed view

Hierarchical modelling

Similar to the previous case, if f∗(x|λ0, x) is difficult to compute, we can approximate it by the
‘Bayesian predicting density’

f̂ (x) ≈ f∗(x|φ̂MAP , x)

or using standard MCMC methods.

Weighted likelihood bootstrap

The WLB becomes more involved in this case due to the dependence of the observations under the
joint predictive distribution f∗(x|φ)

For b = 1, 2, . . . ,B

1. Generate w (b) = (w (b)
1 ,w (b)

2 , . . . ,w (b)
n ) ∼ Dirn(1, 1, . . . , 1)

2. Find φ̃(b) = arg max
Φ

∏n
i=1 f∗(xi |φ, x1, . . . , xi−1)

w(b)
i

Different orderings of the data yield different ’weighted likelihood’ functions.

Then we would have

f̂ (x) ≈
1
B

B∑
b=1

f∗(x|φ̃(b)
, x)

Just as with EB, and unlike MAP-EB, we do not need to specify λ0.
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M-closed view

Model selection

F∗∗ = {f∗∗(x|λ) : λ ∈ Λ}
with

f∗∗(x|λ) =

∫
fλ(x|θλ) pλ(θλ) dθλ

=

∫
f (x|θλ, λ) p(θλ|λ) dθλ

Similar toF∗ , but nowF∗∗ contains prior predictive densities arising from different parametric families indexed by λ.

For f∗∗(x|λ) to be well defined, we need proper priors on θλ . The parameters θλ can have different dimensions.

‘Frequentist’ approach

Bayes factors (BF)
λ̂BF = arg max

Λ
f∗∗(x|λ)

Note 1: BF(λ̂BF , λ) = f∗∗(x|λ̂BF )/f∗∗(x|λ) ≥ 1 for all λ ∈ Λ.
Note 2: BF is related with EB; i.e., we are ‘estimating’ λ by maximizing its ‘likelihood function’ f∗∗(x|λ).

Note 3: We can in principle use ’priors’ on θλ derived from intrinsic BF (Berger and Pericchi, 1996), fractional BF (O’Hagan, 1995),

posterior BF (Aitkin, 1991), etc.

Predicting density (selected model)

f̂ (x) = f∗∗(x|λ̂BF , x)
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M-closed view

Model selection

Bayesian approach

Prior (over the class of models)

P∗∗ = {p∗∗(λ|ω) : ω ∈ Ω}

Posterior
p∗∗(λ|ω0

, x) ∝ f∗∗(x|λ) p∗∗(λ|ω0)

Posterior odds (PO)
λ̂PO = arg max

Λ
p∗∗(λ|ω0

, x)

Note 1: PO(λ̂PO , λ) = p∗∗(λ̂PO |ω
0, x)/p∗∗(λ|ω0, x) ≥ 1 for all λ ∈ Λ.

Note 2: PO is related with MAP; i.e., we are ‘estimating’ λ by maximizing its posterior density p∗∗(λ|ω0, x).

Posterior predictive density (Bayesian model averaging); Draper (1995)

f̂ (x) = f∗∗(x|ω0
, x)

=

∫
f∗∗(x|λ, x) p∗∗(λ|ω0

, x) dλ
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M-closed view

Discrete model selection

F∗∗ = {f∗∗(x|λ) : λ ∈ Λ}
with

Λ = {1, 2, . . . ,m}

‘Frequentist’ approach

Bayes factors (BF): λ̂BF = arg max
Λ

f∗∗(x|λ)

The ‘EB estimator’ λ̂BF is such that f∗∗(x|λ̂BF ) ≥ f∗∗(x|λ) for all λ = 1, 2, . . . ,m.

Predicting density (selected model)

f̂ (x) = f∗∗(x|λ̂BF , x)
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M-closed view

Discrete model selection

Bayesian approach

Discrete prior (over the class of models)

ω = (ω1, ω2, . . . , ωm), Ω =

{
ω ∈ IRm : ωj ≥ 0, j = 1, 2, . . . ,m;

∑m

j=1
ωj = 1

}
p∗∗(λ|ω) = ωλ, λ = 1, 2, . . . ,m

Posterior

p∗∗(λ|ω0
, x) ≡ ω

0
λ(x)

∝ ω
0
λ f∗∗(x|λ)

Posterior odds (PO): λ̂PO = arg max
Λ

p∗∗(λ|ω0, x)

Note 1: The ‘MAP-EB estimator’ λ̂PO is such that p∗∗(λ̂PO |ω
0, x) ≥ p∗∗(λ|ω0, x) for all λ = 1, 2, . . . ,m.

Note 2: If ωλ = 1/m for all λ, then PO≡ BF.

Posterior predictive density (Bayesian model averaging); Clyde (1999)

f̂ (x) = f∗∗(x|ω0
, x)

=
m∑
λ=1

ω
0
λ(x) f∗∗(x|λ, x)
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M-closed view

Discrete model selection

As in the hierarchical modelling case, if f∗∗(x|ω0, x) is difficult to compute, we can approximate it
by the ‘Bayesian predicting density’

f̂ (x) ≈ f∗∗(x|λ̂PO , x)

or using MCMC methods. This may involve using RJ-MCMC (Green, 1995) or a similar algorithm.

Weighted likelihood bootstrap

Here, the WLB is also more involved due to the dependence of the observations under the joint
predictive distribution f∗(x|λ)

For b = 1, 2, . . . ,B

1. Generate w (b) = (w (b)
1 ,w (b)

2 , . . . ,w (b)
n ) ∼ Dirn(1, 1, . . . , 1)

2. Find λ̃(b) = arg max
Λ

∏n
i=1 f∗∗(xi |λ, x1, . . . , xi−1)

w(b)
i

Different orderings of the data yield different ’weighted likelihood’ functions.
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M-closed view

Discrete model selection

Then we would have

f̂ (x) ≈
1
B

B∑
b=1

f∗∗(x|λ̃(b)
, x)

=
m∑
λ=1

ω̃λ f∗∗(x|λ, x)

where

ω̃λ =
1
B

B∑
b=1

1λ(λ̃(b))

Thus we can ‘estimate’ the distribution of λ using the WLB sample.

Just as with BF, and unlike PO, we do not need to specify ω0.

Note that we could use ω̃λ to perform model selection: choose the model corresponding to

λ̂WLB = arg max
Λ
{ω̃λ}
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M-closed view

Discrete model averaging

F∗∗∗ = {f∗∗∗(x|ω) : ω ∈ Ω}
with

f∗∗∗(x|ω) =
m∑
λ=1

f∗∗(x|λ) p∗∗(λ|ω)

=
m∑
λ=1

ωλ f∗∗(x|λ)

The ‘prior predictive’ densities inF∗∗∗ are ‘model averages’ (mixtures).

‘Frequentist’ approach

‘Empirical’ model averaging
ω̂E = arg max

Ω
f∗∗∗(x|ω)

Predicting density (‘estimated’ model average)

f̂ (x) = f∗∗∗(x|ω̂E , x)
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M-closed view

Discrete model averaging

Bayesian approach

Prior (on model weights)
P∗∗∗ = {p∗∗∗(ω|α) : α ∈ A}

Posterior
p∗∗∗(ω|α0

, x) ∝ f∗∗∗(x|ω) p∗∗∗(ω|α0)

MAP-MA
ω̂ = arg max

Ω
p∗∗∗(ω|α0

, x)

Bayesian predicting density (‘estimated’ model average)

f̂ (x) = f∗∗∗(x|ω̂) =
m∑
λ=1

ω̂λ f∗∗(x|λ, x)

Posterior predictive density (‘hierarchical’ Bayesian model averaging)

f̂ (x) = f∗∗∗(x|α0
, x)

=

∫
f∗∗∗(x|ω, x) p∗∗∗(ω|α0

, x) dω

Posterior computations may involve sophisticated MCMC techniques.
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M-closed view

Discrete model averaging

i.e.,

f̂ (x) =

∫ { m∑
λ=1

ωλ f∗∗(x|λ, x)

}
p∗∗∗(ω|α0

, x) dω

=
m∑
λ=1

E [ωλ|α0
, x] f∗∗(x|λ, x)

As before, we could use E [ωλ|α0, x] or ω̂λ to perform model selection by choosing the model
corresponding to

λ̂HBMA = arg max
Λ
{E [ωλ|α0

, x]}

or
λ̂MAP = arg max

Λ
{ω̂λ}

respectively.
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M-closed view

Discrete model averaging

Priors on ω

1. Dirichlet : p∗∗∗(ω|α) = Dir(ω|α)

2. Spike-and-slab (e.g., for large m); George & McCulloch (1997):

ωj =
δjγj∑m

k=1 δkγk

with
γj ∼ Ga(γj |αj , 1) and δj ∼ Ber(q)

for j = 1, 2, . . . ,m
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M-completed view

Parametric procedures from a non-parametric perspective

Traditionally, Bayesian model selection has relied on the use of Bayes factors. However, Bayesian
model selection is more than that.

Here we view the traditional parametric procedures discussed above as statistical decision
problems where the uncertainty on the unknown true model is modelled non-parametrically.

Each of those parametric procedures can be associated with a specific family of parametric
predictive distributions.

In other words, the problem is recast as one of finding a surrogate predictive distribution to be used
as a simpler alternative to a non-parametric predictive distribution or as an estimate of the unknown
true distribution, f (x).

We start by considering a class of predictive distributions entertained by the parametric statistician

FK = {fκ(x) : κ ∈ K},

where the forms of fκ(x) and K depend on the specific parametric procedure of interest.

For example, FK can beF ,F∗ ,F∗∗ orF∗∗∗ .
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M-completed view

Decision theoretical setting

Space of actions: K

Space of unknown states of nature: F = {F : F is a probability distribution on X}

Prior distribution: F ∼ DP(a0F0), a Dirichlet process on F

Utility function: based on the logarithmic score

U(κ, F ) =

∫
log fκ(x) dF (x)
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M-completed view

Decision theoretical setting

Given x = (x1, x2, . . . , xn), independent realizations of X ∼ F (x):

Posterior distribution: DP(anFn), with an = a0 + n and Fn(·) = [a0F0(·) + nF̂ (·)]/(a0 + n), where
F̂ (·) denotes the empirical distribution function of the sample x .

Posterior expected utility: taking a0 = 0,

Un(κ) =

∫
log fκ(x) dF̂ (x) =

1
n

n∑
i=1

log fκ(xi )

which is maximized by the same κ̂ that maximizes

n∏
i=1

fκ(xi ).
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M-completed view

Constructing FΛ

We construct the family FK of surrogate predictive densities on the basis of a collection of
entertained parametric models

M = {Mj : j = 1, . . . ,m}
with

Mj = {fj (x|θj ), pj (θj ) : θj ∈ Θj}

From this non-parametric, decision theoretical perspective, the densities pj (θj ) are to be regarded
simply as convenient building blocks of the parametric predictives fκ(·) and not as actual priors.
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M-completed view

Model averaging

Let κ = ω and K = Ω, where

Ω =

{
ω ∈ IRm : ωj ≥ 0, j = 1, 2, . . . ,m;

∑m

j=1
ωj = 1

}
Now set pj (θj ) = πj (θj |x), the ‘reference posterior’ of θj .

The corresponding surrogate predictive density is then given by

fω(x) =
m∑

j=1

ωj fj (x|x)

where
fj (x|x) =

∫
fj (x|θj )πj (θj |x) dθj

The optimal model corresponds to the value ω̂ that maximizes the posterior expected utility Un(ω)
or, equivalently, that maximizes

n∏
i=1

fω(xi ) =
n∏

i=1

m∑
j=1

ωj fj (xi |x)

Virtually all the traditional parametric procedures, ranging from point estimation to model averaging, can be accommodated within a slightly

more general formulation of this framework by restricting the form of the corresponding κ and K (Gutiérrez-Peña and Walker, 2005).
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M-completed view

Model selection

Model selection is a special case of the above where the weights ω = (ω1, . . . , ωm) degenerate at
one of the m models, so that

Ω =
{
ω ∈ IRm : ωj = 1j (λ); j, λ = 1, . . . ,m

}
,

In this case we can identify κ with λ and let K = {1, . . . ,m}.

The corresponding surrogate predictive density is then given by

fλ(x) =

∫
fλ(x|θλ)πλ(θλ|x) dθλ.

The optimal model corresponds to the value of λ that maximizes the posterior expected utility
Un(λ) or, equivalently, that maximizes

n∏
i=1

fλ(xi ) =
n∏

i=1

f (xi |λ, x)
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M-completed view

Using estimated weights for model selection

Once again, we can perform model selection as a by-product of model averaging: choose the
model corresponding to

λ̂MA = arg max
Λ
{ω̂}

Weighted likelihood bootstrap

If calculating the optimal weights ω̂ is not feasible, we can use the following version of the WLB
(Gutiérrez-Peña et al., 2009)

For b = 1, 2, . . . ,B

1. Generate w (b) = (w (b)
1 ,w (b)

2 , . . . ,w (b)
n ) ∼ Dirn(1, 1, . . . , 1)

2. Find λ̃(b) = arg max
Λ

∏n
i=1 f (xi |λ, x)

w(b)
i

Then we would have

f̂ (x) ≈
1
B

B∑
b=1

f (x|λ̃(b)
, x) =

m∑
λ=1

ω̃λ f (x|λ, x)

with

ω̃λ =
1
B

B∑
b=1

1λ(λ̃(b))
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Concluding remarks

In the M-closed view, estimating the ‘parameter’ that describes the true model leads to various
forms of Bayes factors, but the idea can also give rise to other interesting procedures, both for
model selection and model averaging.

On the other hand, in both the M-closed and M-completed views, the resulting procedures are akin
to finding a ‘maximum likelihood estimator’. If necessary, a weighted likelihood bootstrap scheme
can be used to determine appropriate weights for model averaging. Such weights can in turn be
used as alternatives to Bayes factors for model comparison.

We have at our disposal a wide range of procedures for model selection and model averaging.
Feasibility and computational cost usually dictate which one we use in practice. The WLB
procedures arising from the M-completed view are simpler than those arising from the M-closed
view.

Related ideas have been recently discussed from an M-open perspective by Yao, et al. (2018), who
take the idea of stacking from the point estimation literature and generalize it to the combination of
predictive distributions. They also propose a bootstrapped MA as an approximation for situations
where computational cost is an issue.
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Thank you very much for your attention!
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