Discussion of "Screening the Discrepancy Function of a Computer Model" by Pierre Barbillon, Anabel Forte and Rui Paulo

Marilena Barbieri Università Roma Tre

O'Bayes 2022: Objective Bayes Methodology Conference UC Santa Cruz - September 6-10, 2022

Computer model Discrepancy (bias) function $y(\boldsymbol{x}_i) = f(\boldsymbol{x}_i, \boldsymbol{\theta}) + \delta(\boldsymbol{x}_i) + \epsilon_i \qquad i=1,\ldots,n$ Field data $\epsilon_i \sim N(0, \sigma_0^2)$ $\boldsymbol{x}_i = (x_{1i}, \dots, x_{pi})^T$ input variables $\delta(\cdot)|\sigma^2, \rho \sim GaSP(0, \sigma^2 c(\cdot, \cdot|\rho))$ $c(\boldsymbol{x}_i, \boldsymbol{x}_j | \rho) = \prod c(x_{li}, x_{lj} | \rho_l)$ Separable correlation kernel: i=1 $c(x_{li}, x_{lj}|\rho_l) = \rho_l^{2^a |x_{li} - x_{lj}|^a}$ where $0 < a \le 2$ is a fixed constant $\rho_l \in [0,1]$ If $\rho_l = 1$: x_l is "inhert"

? Which of the input variables is active in the discrepancy function?

Sampling distribution of the field data

$$\boldsymbol{y}|\boldsymbol{\rho}, \sigma^2, \sigma_0^2, \boldsymbol{\theta}), f(\boldsymbol{x}) \sim N_n \left(f(\boldsymbol{\theta}), \sigma^2 R + \sigma_0^2 I_n \right)$$
$$R = \left[c(\boldsymbol{x}_i, \boldsymbol{x}_j | \boldsymbol{\rho}) \right]_{i,j=1,\dots,n}$$

Screening as a variable selection problem: models are indexed using

$$\boldsymbol{\gamma} = (\gamma_1, \ldots, \gamma_p)^T \in \{0, 1\}^p$$

Under model M_l : $\gamma_l = 0 \iff \rho_l = 1$

Prior

$$\pi(\sigma^2, \sigma_0^2, \boldsymbol{\theta}, \boldsymbol{\rho}, \boldsymbol{\gamma}) = \pi(\sigma^2, \sigma_0^2, \boldsymbol{\theta}) \pi(\boldsymbol{\rho}|\boldsymbol{\gamma}) \pi(\boldsymbol{\gamma})$$
$$\pi(\boldsymbol{\rho}|\boldsymbol{\gamma}) = \prod_{l=1}^p \left[\gamma_l I_{(0,1)}(\rho_l) + (1 - \gamma_l) B(\rho_l|\alpha_l, 1) \right]$$

Proposal:

 \checkmark run an MCMC under $\gamma = 1$

 \checkmark obtain $\pi(oldsymbol{\gamma}|oldsymbol{y})$ using the importance sampling approximation

$$B_{\gamma} \approx \frac{1}{M} \sum_{r=1}^{M} \pi(\rho^{(r)} | \gamma)$$

a sample from the posterior
distribution of ρ under $\gamma = 1$

distribution of $oldsymbol{
ho}$ under $oldsymbol{\gamma}=1$

Posterior Inclusion Probabilities Screening (PIPS)

$$\pi(x_l|\boldsymbol{y}) = \sum_{\boldsymbol{\gamma}:\gamma_l=1} \pi(\boldsymbol{\gamma}|\boldsymbol{y})$$

- ? Use of the proposal in variable selection
- ? Which strategy do you suggest when p is large?

Proposal:

- \checkmark run an MCMC under $\gamma=1$
- \checkmark obtain $\pi(oldsymbol{\gamma}|oldsymbol{y})$ using the importance sampling approximation

$$B_{\gamma} \approx \frac{1}{M} \sum_{r=1}^{M} \pi(\rho^{(r)} | \gamma)$$

a sample from the posterior
distribution of a under $\alpha = 1$

distribution of $oldsymbol{
ho}$ under $\gamma=1$

Posterior Inclusion Probabilities Screening (PIPS)

$$\pi(x_l|\boldsymbol{y}) = \sum_{\boldsymbol{\gamma}:\gamma_l=1} \pi(\boldsymbol{\gamma}|\boldsymbol{y})$$

$$\delta(\cdot)|\sigma^2,
ho \sim GaSP(0, \sigma^2 c(\cdot, \cdot|
ho))$$

Separable correlation kernel: $c(x_i, x_j|
ho) = \prod_{i=1}^p c(x_{li}, x_{lj}|
ho_l)$

$$c(x_{li},x_{lj}|
ho_l)=
ho_l^{2^a|x_{li}-x_{lj}|^a}$$

where $0 < a \le 2$ is a fixed constant

?
$$a = 1.9$$

Thank you!